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1. Introduction

The massless field of helicity two in the spectrum of string theory is identified as the

gravitational field since its low energy effective action around flat space-time coincides

with the Einstein-Hilbert action. This identification sets the subleading string corrections

as the quantum corrections to gravity and allows one to ask if and how quantum corrections

preserve or change the properties of classical backgrounds. In particular one may ask if the

subleading string corrections induce a regular horizon on the singular classical geometries

which have an entropy associated to them.

Amongst these singular classical geometries are the half BPS null singular ones which

represent a wrapped fundamental string with general momentum and winding numbers [1].

These null singular geometries have a statistical entropy associated to them since string

states with given momentum and winding numbers are degenerate [2]. It is conjectured that

quantum effects convert these singular geometries to black holes with a regular horizon.

It is known that the the leading world-sheet corrections of the Heterotic string includes

the square of the Riemann tensor. Ref [3], motivated by [4], observed that the inclusion

of the square of the Riemann tensor and its supersymmetric partners in D = 4 [5 – 14]

induces a local horizon with geometry AdS2 × S2 on these backgrounds and for which the

modified Hawking-Bekenstein entropy [15 – 17] is in agreement with the statistical entropy.

This observation renewed interest in the subject [18 – 27]. Ref. [21, 28, 29] introduced the

entropy formalism and concluded that the inclusion of the Gauss-Bonnet action as a part

of the linear α′ corrections in an arbitrary dimension induces a local horizon with geometry

AdS2 ×SD−2 for which the modified Hawking-Bekenstein entropy is in agreement with the

statistical entropy up to a numerical constant factor.

In this note we present a way to calculate all the linear α′ corrections in an arbitrary

dimension and we study how these corrections may change these null singular backgrounds

to black holes. The note is organised in the following way;
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In the second section we review the classical solutions representing a wrapped funda-

mental string on a cycle. We realise them as ten dimensional backgrounds composed of

the metric, the NS two form and the dilaton first compacted on a torus of appropriate

dimensionality to D + 1 dimensional space-time and then through KK compactification on

a circle to a D dimensional space-time.

In the third section we review how the α′ corrections can be computed. We present the

linear α′ corrections in the Heterotic theory to backgrounds of metric, NS two form and

dilaton obtained from scattering amplitude considerations [30, 31]. We study the field redef-

inition ambiguities. We require that the generalisation of the Einstein tensor is covariantly

divergence free. This requirement fixes the curvature squared terms to the Gauss-Bonnet

Lagrangian keeping some of the field redefinition ambiguity parameters untouched.

In the fourth section we discuss how the singularity could be modified by the inclusion

of the α′ corrections. We employ the compactification process of the first section to account

for all the linear α′ corrections in lower dimensions using the corrections in ten dimensions.

We compute the local horizon configuration parameters for all field redefinitions compatible

with ten dimensional diffeomorphism group. Note that the modified Hawking-Bekenstein

entropy is the same for actions related to each other by field redefinition provided that the

α′ terms are studied as perturbations around a classical solution [32]. However since the

local horizon is the exact solution of the truncated equations then the modified Hawking-

Bekenstein entropy depends on the field redefinition ambiguity parameters. We show that

there exist schemes in which the inclusion of all the linear α′ corrections, however exclud-

ing the gravitational Chern-Simons term, in an arbitrary dimension gives rise to a local

horizon with geometry AdS2 × SD−2 for which the modified Hawking-Bekenstein entropy

is compatible with the statistical entropy and outside which the higher order α′ corrections

could be perturbative. We also discuss on the existence of a smooth solution connecting

the local horizon to asymptotic infinity.

In the fifth section the conclusions are presented.

2. The tree-level singular background

The low energy effective action of the critical heterotic string theory for the metric (g), the

NS two-form (B) and the dilaton (φ ) reads

S(10) =
1

32π

∫

d10x
√−g e−2φ L(10) (2.1)

L(10) = (RRicci + 4|∇φ|2 − 1

12
H ijkH

ijk) , (2.2)

where

H ijk = 3B[ij,k] . (2.3)

The bold symbols will be used to represent the fields in ten dimensions. Note that we are

not using the modified field strength [33]

Hmodified = dB − α′

4
[
1

30
ω3Y (A) − ω3L(Ω)] , (2.4)
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where ω3Y (A) and ω3L(Ω) stand for the Chern-Simons three-forms associated respectively

to either the Spin(32)/Z2 or E8×E8 connection and to the spin connection. In this work

we are considering backgrounds of vanishing gauge connections where ω3Y (A) = 0. The

α′ term in (2.4) represents a part of the linear α′ corrections identified during the study of

the anomaly cancellation. We shall study the effects of all the linear α′ corrections however

excluding the gravitation Chern-Simons term. For this purpose we use (2.3)

We are interested in the extrema of (2.1) whose fields configuration follows

ds2 =

D
∑

µ,ν=1

gµν(x)dxµdxν + 2gyµ(x) dy dxµ + gyy(x)dy2 +

10
∑

m=D+1

dz2
m , (2.5)

B = Bµν(x)dxµ ∧ dxν + Byµ(x)dxy ∧ dy , (2.6)

φ = φ(x) , (2.7)

y ∼ y + 8π , (2.8)

where y is compactified on a circle and zi are compactified on T 9−D. These extrema

are examples of trivial compactification on a torus of appropriate dimensionality from

“10” dimensions to a “D + 1” dimensional space-time and then KK compactification on a

circle to a D dimensional space-time. If one represents non-trivial components of the ten

dimensional fields by

gyy(x) = T 2 ,

gµν(x) = gµν + 4T 2A(1)
µ A(1)

ν ,

2φ(x) = 2φ + ln T − ln V,

gyµ(x) = 2A(1)T 2 ,

Byµ(x) = 2A
(2)
µ ,

Bµν(x) = Bµν + 2(A(1)
µ A(2)

ν − A(1)
ν A(2)

µ ) ,

(2.9)

where V is the volume of the compact directions. Then the induced action for the new

fields - g,A(1), A(2), B, T and φ- reads

S =

∫

dDxL (2.10)

=
1

32π

∫

dDx
√−ge−2φ(RRicci + 4|∇φ|2 − |∇T |2

T 2
− |dB|2

12
− T 2|dA(1)|2 − |dA(2)|2

T 2
),

where RRicci is the Ricci scalar of gµν , and an integration by parts is understood

L(10) − L = 2
√−g ∇µ(e−2φ ∇µT

T
) . (2.11)

We refer to (2.10) as the induced action, and to xµ and (zµ,y) respectively as the large

dimensions and as the compactified space. Due to the form of the induced action it is nat-

ural to interpret A(1) and A(2) as different U(1) gauge connections in the large dimensions.1

A family of the extrema of the compactified action is given by

ds2
string

= − e4φ(r) dt2 + dr2 + r2 dΩ2
D−2 , (2.12)

1ref. ([34]) shows that the fields in large dimensions should be defined by (2.9) in order to not mix the

U(1) symmetries.
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e−4φ(r) =
(rD−3 + 2W ) (rD−3 + 2N)

r2(D−3)
, T (r) =

√

rD−3 + 2N

rD−3 + 2W
, (2.13)

A(1)
τ (r) = − N

rD−3 + 2N
, A(2)

τ (r) = − W

rD−3 + 2W
, (2.14)

where N and W are two arbitrary numbers labelling the solution. We only consider the

case where N and W are both positive. These backgrounds are constructed in [1] as

singular limits of regular black-holes obtained by applying a solution generating transfor-

mation [35, 36] on a higher dimensional Kerr metric. Here we use the notation of [37].

ref. [1] proved that they break half of the ten dimensional supersymmetries leaving eight

unbroken supersymmetry parameters. These backgrounds are null-singular, i.e. the horizon

coincides with the singularity. They represent BPS states of an elementary string carrying

n units of momentum and w units of winding charges along S1 of the y coordinate where 2

n =
(D − 3)ΩD−2

4π
N , (2.15)

w =
(D − 3)ΩD−2

4π
W , (2.16)

For general values of N and W a tachyon instability may exist around the singularity3,

reminiscent of the tachyon instability outside the horizon of Euclidean black holes presented

in [38, 39]. We focus on the cases where this instability is not present.

An entropy may be associated to these backgrounds since in general there exists more

than one state of the Heterotic string carrying w units of winding and n units of momentum

along S1 of the y coordinate. For large n and w the degeneracy of these states grows as

e4π
√

nw [40]. Thus the entropy, defined by the logarithm of the degeneracy of the states, is

given by:

Sstatistical = 4π
√

nw , (2.17)

when n and w are large. We refer to this entropy as the statistical entropy. A dilemma will

arise as soon as the statistical entropy is associated to these tree-level backgrounds since

they are singular and do not possess a regular event horizon to which the thermodynamical

properties can be connected. This dilemma can be resolved in either of the following ways,

I. Statistical entropy should not be associated to these backgrounds.

II. Thermodynamical properties should be expressed in term of something else, in place

of the event horizon, which null-singular geometries possess.

III. The subleading string corrections will induce an event horizon and the horizon cloaks

the singularity.

2We have chosen a specific value for the radius of the compactification because the α′ perturbative

corrections to (2.12) do not depend on the radius of the compactification. The solution which represents

KK-compactification on a circle with an arbitrary radius can be generated by rescaling y and using (2.9).

This solution is written in [37].,sen2
3Localised winding tachyons may appear when a none-trivial cycle of the space-time shrinks to a point.

The radius of the cycle of y coordinate at r = 0 becomes small for small N
W

. Thus for general values of N

and W some localised tachyon might appear around r = 0.
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Of the above possibilities, the first seems unnatural since the statistical entropy is associated

to regular black holes [41 – 43] and these singular backgrounds are a limit of regular black

holes. The fact that both the Euclidean path integral approach4 [45] and the Noether

current method [15, 16] express the entropy of a given black hole in term of its event horizon

is not sufficient to conclude that entropy could not be associated to geometries without

the event horizon. We would like to point out that Mathur and Lunin’s description of the

entropy [46] may resolve the dilemma in the second way. It is intersting that for the case

of singular backgrounds representing D1-D5 branes, which have an entropy associated to

them, both Mathur-Lunin description [47] and the subleading string corrections [27] can

generate the entropy. In this note we study if the inclusion of subleading corrections can

generate a horizon for backgrounds representing a fundamental string.5

3. The α
′ corrections

String theory provides two kind of perturbative corrections to a given background; the

string loop corrections and the string world-sheet (α′) corrections. The string coupling

constant of (2.12), g2
s = g2

0e
2φ, is

g2
s = g2

0

rD−3

√

(rD−3 + 2W )(rD−3 + 2N)
≤ g2

0 , (3.1)

where g0 is an arbitrary parameter. We choose a sufficiently small value for g0. Thus we

ignore the string loop corrections. The α′ corrections to the Lagrangian read

L = L(0) + α′ L(1) + α′2 L(2) + · · · , (3.2)

where L(0) stands for the tree-level Lagrangian and the rest is its successive subleading

corrections. This series may not make sense for (2.12) since each term of the α′ series

diverges at its singularity. However note that the α′ corrections change the background

itself

g → g = g(0) + α′ g(1) + α′2 g(2) + · · · , (3.3)

and the α′-corrected metric, possibly, can have a horizon outside which the α′ expansion

makes sense. The finiteness and smoothness of the α′ corrections to the dilaton outside the

horizon implies that the α′ corrections to the string coupling constant, g2
s = g2

0e
2φ, remain

bounded outside the horizon. Hence if the induced horizon exists then the string loop

corrections can be neglected consistently outside the horizon for sufficiently small values

of g0. In order to check the existence of the induced horizon we truncate the equations of

motion at O(α′2). Then we study if a exact solution of the truncated equations is a black

hole with a regular horizon outside which the higher order α′ corrections are perturbative.

The perturbative α′ corrections can be computed in the following ways

4Note that in string theory the presence of the tachyon-like winding modes of the tachyon wrapped

around the Euclidean time which survive GSO projection [38, 39] adds to the known disturbing aspect [44]

of the Euclidean approach.
5The subleading string corrections to the Schwarzschild black hole has been studied in [48, 49].
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• From the scattering amplitudes of string on sphere as done in [30, 31, 50]. This

method gives the Low Energy Effective action up to a perturbative field redefinition

since field redefinitions do not alter the scattering amplitudes.

• Requiring exact conformal symmetry in the corresponding sigma model as done in [48,

51 – 55, 54]. In this method a regularisation and a renormalisation scheme should be

chosen prior to computing the beta functions. Different schemes are related to each

other by a perturbative field redefinition.

• Calculating the LEE action in the Heterotic closed string field theory [56]. This

computation has not yet been accomplished. However it does not fix the perturbative

field redefinition ambiguity since there remains the freedom to redefine the fields [57].

The first two methods give the same action up to a perturbative field redefinition ambiguity

as the result of the consistency of the string theory around flat space-time [58, 59]. The

outcome of the last method should be in agreement with those of the former ones. The linear

α′ corrections in Heterotic theory derived from string amplitude considerations read [30, 31]

S
(1)
MT =

1

32π

∫

d10x
√

− det g
α′

8
e−2φL

(1)
MT , (3.4)

L
(1)
MT = RklmnRklmn − 1

2
RklmnH kl

p Hpmn +

−1

8
H mn

k H lmnHkpqH l
pq +

1

24
HklmHk

pqH
lp

r Hrmq .

This action beside the gravitational Chern-Simons modification of dB in L(10) (2.1) in-

cludes all the linear α′ corrections for backgrounds composed of the dilaton, the metric and

the NS two form. A general field redefinition

gij → gij + α′T ij , (3.5)

Bij → Bij + α′Sij , (3.6)

φ → φ − α′X

2
, (3.7)

induces a change in L
(1)
MT of the form [60]

∆L = −T ij(Rij −
1

4
H iklH

kl
j + 2∇i∇jφ) + (3.8)

+(
1

2
T i

i + X)(R − 1

12
H2 + 4∇2φ − 4(∇φ)2) − 1

2
∇kSlmHklm .

where X,Sij and Tij are tensors with appropriate properties and are polynomials of gij ,

Bij, φ and their derivatives.6 We consider only a class of the field redefinition ambiguities

parameters given by

T ij = aRij +
b

8
H iklH

kl
j + (e − 12f)gijR + fgijHklmHklm , (3.9)

6To compute ∆L it is enough to remember that gijδRij = (∇i
∇

j
− gij

¤)δgij . [61]
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X +
1

2
T i

i = (c − 12f)R + (
d

12
+ 3f)H ijkH

ijk , (3.10)

Sij = 0 , (3.11)

where a, b, c, d, e and f are real numbers. This class of field redefinition alters the linear α′

corrected action by

1

α′ ∆L = −aRijR
ij + (c − e)R2 + (

d

12
− c

12
+

e

4
)R H2 − d

144
(H2)2 (3.12)

+(
a

4
− b

8
)H2

ijR
ij +

b

32
H2

ijH
2ij + O(∇φ) ,

where

H2
ij = H iklH

kl
j , (3.13)

H2 = H ijkH
ijk , (3.14)

and the derivatives of the dilaton are not written to save space. In the forthcoming com-

putations we do not need them. We require the generalisation of the Einstein tensor to

be covariantly divergence free for a trivial dilaton. Adding this requirement to the linear

α′ corrections changes it to the first order Lovelock gravity [62] where (a, c − e) = (1
2 , 1

8).7

Thus we set (a, c) = (1
2 , 1

8 + e) for which the linear α′ corrected action reads

S =
1

32π

∫

d10x
√

− det g e−2φ L (3.15)

L = R − 1

12
H2 + 4|∇φ|2 + α′L(1) + α′O(∇φ) + α′O(ω3L(Ω)) + O(α′2) (3.16)

L(1) =
1

8
LGB +

1

192
HklmHk

pqH
lp

r Hrmq − 1

16
RklmnH kl

p Hpmn +

+(
b

32
− 1

64
)H2

ijH
2ij + (

d

12
− e

6
− 1

96
)R H2 − d

144
(H2)2 + (

1

8
− b

8
)H2

ijR
ij

where LGB = RijklR
ijkl − 4RijR

ij + R2 is the Gauss-Bonnet term. In the work [63] and

some follows works the α′ corrections were required not to produce new extrema for the

bi-linear part of the action describing deviation from flat Minkowski space. This criterion,

the no-ghost criterion, is questionable since the new extrema are not perturbative in α′.8

The criterion we used produces the same results and is independent of the perturbative

behaviour of the α′ series. However both of these criteria fail to identify a unique action.

7Lovelock gravity [62] is a generalisation of Einstein-Hilbert action where the generalisation of Einstein

tensor Gij : (1) is symmetric in its indices, (2) is a function of the metric and its first two derivatives, (3)

is covariantly divergence free. The linear α′ corrections can be chosen to satisfy all these conditions [63].

However the higher order α′ corrections include also higher derivatives of the metric and can not be rewritten

as higher order [64] Lovelock gravity [65].
8The spectrum of R+ α′

8
RijklR

ijkl differs with the one of R when RijklR
ijkl is large. This implies that

the ghosts are necessarily outside the perturbative regime.
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4. Modification of the singularity

We presume that there exists an exact α′ background in the large dimensions which in the

string frame reads

dsexact = −f(r)dt2 + dr2 + g(r)dΩ2
D−2 (4.1)

φ = φ(r) , T = T (r) , (4.2)

A
(1)
t = A

(1)
t (r) , A

(2)
t = A

(2)
t (r) , (4.3)

the large r limits of which are (2.12), (2.13) and (2.14). The number of the modified

supersymmetry charges9 of this α′ exact background should be the same as the number

of SUSY charges of the tree-level background. It is conjectured [37] that this α′ exact

background has a regular event horizon with isometry group of AdS2 × SD−2 whose fields

in the vicinity of its horizon can be approximated by

ds2 = v1 (−ρ2dτ2 +
dρ2

ρ2
) + v2dΩ2

D−2 , (4.4)

e−2φ(ρ) = s , (4.5)

T (ρ) = T , (4.6)

F
(1)
tρ = e1 , (4.7)

F
(2)
tρ = e2 , (4.8)

where v1 , v2 , s,T , e1 and e2 are constant real (s,T are positive) numbers to be fixed by the

equations of motion and the behaviour of the fields at infinity. A concrete proof or refutal

of this conjecture requires knowing all the α′ corrections. Neither the string scattering

amplitudes nor the sigma model techniques nor CSFT are practically useful to compute

the infinite terms of the α′-expansion series. There exists no other known method capable

of producing the full α′-corrected action.10 Currently the conjecture is supported by

I. Inclusion of only the Gauss-Bonnet action in the induced action allows for the exis-

tence of a local horizon geometry whose modified thermodynamical entropy [15 – 17]

is in agreement with the statistical entropy up to a numerical constant [37].

II. Inclusion of RijklR
ijkl and the terms needed by SUSY [5 – 14] in the four dimensional

induced action allows for a local horizon whose modified thermodynamical entropy

is in agreement with the statistical entropy [3]. In higher dimensions it is not known

which terms should be added to RijklR
ijkl to maintain SUSY.

The conjecture may be contradicted by:

I. The fundamental string is a special case of the null sigma models [69, 70]. It means

that there exists a scheme in which the background fields retain their forms at the

9In LEEA the supersymmetry is realised as the symmetry of the action therefore, at least, the on shell

SUSY constraints needs modification upon the inclusion of the subleading corrections.
10There have been attempts to guess a compact form for the α′ expansion series of the metric [67, 68].
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supergravity approximation. Thus within this scheme the fundamental string remains

as a null singular background even after the inclusion of all the α′ corrections. Does

this contradict the appearance of a horizon due to the inclusion of the α′ corrections?

II. The value of Wald’s entropy is invariant under field redefinition provided that the

α′ terms are studied as perturbations around a classical background [32]. Here since

Wald’s formula is applied on the local horizon which is the exact solution of the

truncated equations of motion then Wald’s entropy depends on the field redefini-

tion ambiguity parameters. Therefore which values should be chosen for the field

redefinition parameters to calculate Wald entropy?

III. The Gauss-Bonnet action or the supersymmetric version of curvature squared terms

are not all the linear α′ corrections. This fact was also pointed out in [24]. Does the

inclusion of all the linear α′ corrections allow for the existence of the horizon?

IV. Is there a smooth interpolating solution from the horizon toward the asymptotic

infinity?

V. Could the higher order α′ corrections be consistently neglected?

The existence of a scheme with no α′ corrections does not exclude existence of a scheme

which converts a wrapped fundamental string into a regular black hole. It is not known

which scheme would be preferred by the underlying conformal field theory.11 We will show

that inclusion of all linear α′ corrections, however excluding the gravitational Chern-Simon

term, produces the local horizon. We illustrate that in general the modified Hawking-

Bekenstein entropy associated to the local horizon is not the same for actions related to

each other by field redefinitions. Amongst these actions, the choices for which the modified

Hawking-Bekenstein entropy is in agreement with the statistical entropy would be preferred.

We show that in some schemes the higher order corrections can be ignored outside the α′

stretched horizon.

We obtain the linear α′ corrections to the induced action by applying the compact-

ification process to the linear α′ corrected action in ten dimensions (3.15). We consider

the linear α′ corrected action in (3.15) for all values of the field redefinition parameters,

(b, d, e, f). ref. [71] shows that the pull back of (3.8) to the four dimensional space time

is a functional of the gauge field strengths of A1 and A2. Thus we can use the entropy

formalism [21, 29] to express the local horizon parameters in terms of the electric charges.

The entropy formalism utilises the entropy function defined by

f(~v ,T ,~e) =
1

32π

∫

dθ dφ
√

− det g s L(~v ,T ,~e) (4.9)

11ref. [83, 84] prove that for a regular horizon of geometry AdS2 × SD in Heterotic theories all the

corrections to the thermodynamical entropy could be reproduced by the inclusion of the Gauss-Bonnet

action to the induced action in the supergravity approximation. This renormalisation theorem does not

state that there is an induced horizon with geometry AdS2 × SD.
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where L(~v, T,~e) is the induced Lagrangian evaluated on the horizon configuration,

S =
1

32π

∫

d4x
√

− det g e−2φ L(~v ,T ,~e). (4.10)

Then the equations of motions are equivalent to

∂f

∂vi

= 0 , (4.11)

∂f

∂s
= 0 , (4.12)

∂f

∂T
= 0 , (4.13)

∂f

∂e1

=
N

2
, (4.14)

∂f

∂e2

=
W

2
, (4.15)

where we have used the notation of Appendix A of [29] for the normalisation of the charges.

To evaluate the induced action near the horizon we employ (2.9) to reconstruct the horizon

configuration in ten dimensions from (4.4)-(4.8)12

ds2 = ds2 + T 2(dy + 2 e1 r dτ)2 +
∑

dz2
i ,

e−2φ =
s

T
, (4.16)

B = −2 e2 r dτ ∧ dy .

where the gauges are fixed by

A1 = (e1 r, 0, 0, 0) , (4.17)

A2 = (e2 r, 0, 0, 0) . (4.18)

Note that the class of field redefinitions considered in (3.12) includes any field redefinition

which produces non-zero terms in the action near the horizon (4.16) and whose metric and

NS two-form equations of motion are second order differential equations. For the sake of

simplicity from this time on we set D = 4 and we study the four dimensional background

representing the fundamental string,

D = 4 . (4.19)

Using the ten dimensional background near the horizon (4.16) one finds that

L0 = R − 1

12
H2 = − 2

v1

+
2

v1

+
2 e1

2 T 2

v1
2

+
2 e1

2

v1
2 T 2

(4.20)

L1 =
1

8
LGB = − 1

v1 v2

+
T 2 e1

2

v1
2 v2

(4.21)

12The compactification of the Gauss-Bonnet action has been done in [72].
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L2 =
1

192
HklmHk

pqH
lp

r Hrmq =
e2

4

2 v1
4 T 4

(4.22)

L3 = − 1

16
RklmnH kl

p Hpmn =
e1

2 e2
2

v1
4

− e2
2

v1
3 T 2

(4.23)

L4 = (
b

32
− 1

64
)H2

ijH
2ij = 6 (b − 1

2
)

e2
4

v1
4 T 4

(4.24)

L5 = (
1

8
− b

8
)H2

ijR
ij = 2 (b − 1) (

e1
2 e2

2

v1
4

− e2
2

v1
3 T 2

) (4.25)

L6 = (
d

12
− e

6
− 1

96
)R H2 = h e2

2 (
1

v3
1 T 2

− e1
2

v1
4
− 1

v1
2 v2 T 2

) (4.26)

L7 =
d

144
(H2)2 = 4 d

e2
4

v4
1 T 4

(4.27)

where we used h defined by h = 4d − 8e − 1
2 to represent L6 in a more convenient way.

Inserting the above expressions in ten dimensional action we get

S = S =
1

32π

∫

dt dr dφ d cos θ s v1 v2 (L0 + α′
7

∑

i=1

Li ) + O(α′2) , (4.28)

where the integration over the compact space is understood. Then the entropy function

follows

f(~v ,~e, s,T ) =
1

8
s v1 v2 (L0 + α′

7
∑

i=1

Li) (4.29)

where we have truncated the α′ series. Using (4.29) in (4.11)-(4.15) gives the equations

of motion. The solution of the equations of motion identifies the horizon parameters.

The identification of the near horizon geometry of half BPS backgrounds is an example of

the supersymmetric attractor mechanism [73, 74], where the explicit equations of motion

are solved rather than the supersymmetric constraints. Solving the equations of motion

was first carried out by Ashoke Sen in [37] where only the Gauss-Bonnet Lagrangian was

included in the induced action. The Gauss-Bonnet Lagrangian in the four dimensions reads

1

8
(RijklR

ijkl − 4RijR
ij + R2) = − 1

v1 v2

(4.30)

which coincided with the first term in L1 . We see that in total five terms in the the

summation of L1 + · · · + L7 are not reproduced by the inclusion of the four-dimensional

Gauss-Bonnet Lagrangian.

A linear combination of the equations of motion of T and of v1 factorises

∂f

∂s
= 0 → f = 0 , (4.31)

(
1

T

∂f

∂T
− 4e1

2 ∂f

∂v1

) |
f=0

= (T 2e1
2 − v1

2

4
)(. . .) . (4.32)

eq. (4.32) implies that some of the solutions may be given by

e1 =

√
v1

2T
. (4.33)
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eq. (4.33) simplifies the equations of motion of v1 , v2 , s and T and enables one to solve

them,

v1 = (3 + hx2)
α′

8
, (4.34)

v2

v1

=
4(1 + hx2)

−hx4 + (3h + 4b − 5)x2 + 15
, (4.35)

s =

√

xN W

v1

hx4 + 1

3 + (b − 1)x2

v1

v2

(4.36)

T =

√

N

W x
(4.37)

e2 =
1

2

√
v1 xT , (4.38)

where x is a root of

(−4 d − 6 b − h +
5

2
)x4 − 6 (1 − b)x2 + 9 = 0 , (4.39)

Note that we used x as a different parametrisation of b, d, h to express the near horizon

configuration in a more convenient way. Eq’s (4.33)-(4.38) identify the near horizon config-

uration. We use the entropy formula of entropy formalism [21, 28, 29] to calculate Wald’s

entropy associated to the local horizon. The entropy formalism expresses Wald’s entropy,

SBH , by

SBH = 2π(
∂f

∂e1

e1 +
∂f

∂e2

e2 − f), (4.40)

which is evaluated on the horizon. We can use (4.11)-(4.15) to write

SBH = 2π(
N

2
e1 +

W

2
e2 ) = π

√

N W x v1 = π

√

NWα′

8

√

x(3 + hx2) (4.41)

where we used the local horizon parameters (4.33), (4.37) and (4.38). We see that the

entropy depends on h and x which are two field redefinition ambiguity parameters satisfy-

ing (4.39) . This dependence is the result of applying Wald’s entropy formula on a exact

solution of the truncated equations of motion. The ambiguity parameters would be pre-

ferred in such a way that the statistical and thermodynamical entropies are in agreement.

To further elaborate the scheme dependence let us require (4.41) to be the same as the

statistical entropy. This equality happens in the schemes where

x v1 = α′ (4.42)

and we choose these schemes. There exist a set of ranges for the parameters of the field

redefinition ambiguity where v1 , v2 ,T , s are all positive. It is straightforward to identify

these ranges. Let us focus on the subset of the parameters where identity is a root of (4.39)

or equivalently h = −4d + 11
2 . In this subset T-duality in the y direction (2.8) remains

trivial in the sense that interchanging N and W describes T-duality both at asymptotic
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infinity and near the horizon.13 Then using (4.42) for x = 1 fixes d to d = 1
8 for which the

near horizon configuration is simplified to

v1 = 16, (4.43)

v2

v1

=
6

5
, (4.44)

T =

√

N

W
, (4.45)

e1 = 2

√

W

N
, (4.46)

e2 = 2

√

N

W
, (4.47)

s =
5

8

√
N W , (4.48)

and we have chosen b = 0 and used the unit of α′ = 16. We see that (v1
α′ ,

v2
α′ ) ∼ (1, 1),

and the stretched horizon is not larger than α′. We can choose other values for the field

redefinition ambiguity parameters to make the local horizon arbitrarily large. For example

we can choose x = 1
2 , b = 0, h = 52, d = 141

8 to get

v1 = 2α′, (4.49)

v2 =
224

99
α′ , (4.50)

T =

√

2
N

W
, (4.51)

e1 =
1

2

√

α′ W

N
, (4.52)

e2 =
1

2

√

α′ N

W
, (4.53)

s =
9

4

√

N W

α′ , (4.54)

for which one can argue that the higher order α′ corrections are suppressed outside the

horizon and the higher order α′ corrections only provide perturbations around the “black

hole”. We expect that there exist schemes14 in which Wald’s entropy for a black hole

of a general dimension is in agreement with the statistical entropy and (v1
α′ ,

v2
α′ ) > (1, 1),

therefore, the higher order α′ corrections could be ignored outside the stretched horizon

within these schemes. However we notice that the values of the field redefinition parameters

are not small in these schemes. For the case of the WZW models where the exact conformal

theory is known the values of the field redefinition ambiguity in which the background fields

13In general requiring T-duality to commute with α′ corrections identifies corrections to T-duality [75, 76].

The explicit form of the α′ corrections to T-duality on backgrounds composed of a diagonal metric and the

dilaton is presented in [77, 78].
14[79] has found the local horizon configuration parameters in a general dimension for a general Lovelock

gravity.
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retain their forms are at order one [80]. Thus it is unlikely that the large values for the

field redefinition ambiguity parameters are going to be chosen by the underlying conformal

field theory.

Note that there exist field redefinition ambiguities which vanish near the horizon and

infinity. The class of the field redefinitions that leave the equations of the metric and NS

two-form as second order differential equations is

Tij = c1 ∇i∇jφ + c2gij¤φ + c3∇iφ∇jφ + c4gij |∇φ|2 (4.55)

X = c5¤φ + c6|∇φ|2 (4.56)

where c1, c2, . . . , c6 are arbitrary real numbers. ref. [37, 81] have looked for a numerical

interpolating solution in one single set of the ambiguity parameters. One should study if

there exists any set of values for b, d, e, f, c1, . . . , c6 for which a smooth solution interpolates

from the near horizon geometry to infinity. This question needs further investigation,

however due to the large numbers of the free parameters it is tempting to argue that the

interpolating solution exists in general.

The inclusion of the gravitational Chern-Simons terms does not change the fact that

the entropy associated to the induced horizon is scheme dependent. Thus we expect that

the inclusion of the gravitational Chern-Simons terms only results to a change in the

values of the ambiguity parameters that are preferred by the equality of the statistical and

thermodynamical entropies. It is intersting to apply techniques which were introduced in

ref. [24, 85] in order to also include the gravitational Chern-Simons term.

5. Conclusions

We have studied the linear α′ corrections and the field redefinition ambiguities in the critical

Heterotic string theory for the backgrounds representing a fundamental string wrapped

around a cycle.

We have required the α′ corrections to the Einstein tensor to be covariantly divergence

free. This requirement has enabled us to rewrite the square of the Riemann tensor as

the Gauss-Bonnet Lagrangian keeping some of the field redefinition ambiguity parameters

untouched. One may ask if this requirement, similar to the ghost-freedom criterion [82],

could be applied to all orders in α′. This question needs further investigation. It would

be intersting to find a criterion which both fixes the remaining ambiguity parameters and

gives rise to a stretched horizon for half-BPS singular backgrounds representing a wrapped

fundamental string. It would be intersting to study if applying the MM-criterion [60, 66] in

the presence of the gravitational Chern-Simons corrections results to the stretched horizon.

We have applied a toroidal compactification to construct all the linear α′ corrections

to a wrapped fundamental string. We have evaluated all the linear α′ corrections however

excluding the gravitational Chern-Simons term to the action on the horizon. We employed

the entropy formalism to find the horizon configuration parameters and to compute the

entropy. We have found that Wald’s entropy for the induced horizon depends on the

field redefinition ambiguity parameters. This dependence is due to identifying the induced

horizon as the exact solution of the truncated equations of motion.
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We have shown that there exist schemes in which the inclusions of all the linear α′

corrections but the gravitational Chern-Simons term gives a horizon with geometry AdS2×
SD for which the statistical and thermodynamical entropies are in agreement. Within these

schemes the size of the horizon is scheme dependent. It is intersting to apply techniques

which are introduced in ref. [24, 85] to also include the gravitational Chern-Simons term.

This means that there exist schemes in which the α′ stretched horizon is small and also

there exist schemes where the α′ stretched horizon does not exist at all. We do not know

which scheme would be preferred or chosen by the underlying conformal field theory since

it is not known what a conformal field theory (and if a unique one) represents a wrapped

fundamental string.

Although we have proved the existence of the schemes in which the α′ stretched horizon

could be larger than the string length and for which the statistical entropy is in agreement

with Wald entropy, still we find disturbing that the the thermodynamical entropy is scheme-

dependent. This dependence beside the existence of a scheme with no α′ corrections to a

fundamental string [69, 70] may be counted on as indications to express the thermodynam-

ical properties in term of something else, in place of the event horizon, which null-singular

geometries possess instead of requiring the subleading corrections to covert the null singu-

lar backgrounds to black holes with a regular event horizon. We would like to point out

that Mathur and Lunin description for the entropy [46] may be employed to generate a

thermodynamical entropy for a wrapped fundamental string without first requiring the α′

corrections to produce an event horizon covering the singularity.
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